
regression - What does it mean to regress a variable against …
Dec 4, 2014 · Those words connote causality, but regression can work the other way round too (use Y to predict X). The independent/dependent variable language merely specifies how one …
regression - When is R squared negative? - Cross Validated
Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …
regression - Converting standardized betas back to original …
I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.
regression - When should I use lasso vs ridge? - Cross Validated
Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …
regression - Trying to understand the fitted vs residual plot?
Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …
regression - Linear vs Nonlinear Machine Learning Algorithms
Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …
Difference between linear regression and neural network
Nov 8, 2018 · Some site claims linear regression means the continuous value output. If I have an MLP with hidden layers, and its output is continuous value (ex: house price), then is it called …
regression - Interpreting the residuals vs. fitted values plot for ...
Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a
correlation - What is the difference between linear regression on y ...
The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?